Forecast Stocks by Logistic Regression, Linear Discriminant Analyser and Quadratic Discriminant Analyser

Forecast Stocks by Logistic Regression, Linear Discriminant Analyser and Quadratic Discriminant Analyser

The below code is for python 3

import datetime
import numpy as np
import pandas as pd
import sklearn

from import DataReader
from sklearn.linear_model import LogisticRegression
from sklearn.lda import LDA
from sklearn.qda import QDA

def create_lagged_series(symbol, start_date, end_date, lags=5):
    """This creates a pandas DataFrame that stores the percentage returns of the 
    adjusted closing value of a stock obtained from Yahoo Finance, along with 
    a number of lagged returns from the prior trading days (lags defaults to 5 days).
    Trading volume, as well as the Direction from the previous day, are also included."""

    # Obtain stock information from Yahoo Finance
    ts = DataReader(symbol, "yahoo", start_date-datetime.timedelta(days=365), end_date)

    # Create the new lagged DataFrame
    tslag = pd.DataFrame(index=ts.index)
    tslag["Today"] = ts["Adj Close"]
    tslag["Volume"] = ts["Volume"]

    # Create the shifted lag series of prior trading period close values
    for i in range(0,lags):
        tslag["Lag%s" % str(i+1)] = ts["Adj Close"].shift(i+1)

    # Create the returns DataFrame
    tsret = pd.DataFrame(index=tslag.index)
    tsret["Volume"] = tslag["Volume"]
    tsret["Today"] = tslag["Today"].pct_change()*100.0

    # If any of the values of percentage returns equal zero, set them to
    # a small number (stops issues with QDA model in scikit-learn)
    tsret['Today'] = [x if abs(x)>=0.0001 else 0.0001 for x in tsret['Today']]

    # Create the lagged percentage returns columns
    for i in range(0,lags):
        tsret["Lag%s" % str(i+1)] = tslag["Lag%s" % str(i+1)].pct_change()*100.0

    # Create the "Direction" column (+1 or -1) indicating an up/down day
    tsret["Direction"] = np.sign(tsret["Today"])
    tsret = tsret[tsret.index >= start_date]

    return tsret

def fit_model(name, model, X_train, y_train, X_test, pred):
    """Fits a classification model (for our purposes this is LR, LDA and QDA)
    using the training data, then makes a prediction and subsequent "hit rate"
    for the test data."""

    # Fit and predict the model on the training, and then test, data, y_train)
    pred[name] = model.predict(X_test)

    # Create a series with 1 being correct direction, 0 being wrong
    # and then calculate the hit rate based on the actual direction
    pred["%s_Correct" % name] = (1.0+pred[name]*pred["Actual"])/2.0
    hit_rate = np.mean(pred["%s_Correct" % name])
    print("%s: %.3f" % (name, hit_rate))
if __name__ == "__main__":
    # Create a lagged series of the S&P500 US stock market index
    snpret = create_lagged_series("^GSPC", datetime.datetime(2001,1,10), datetime.datetime(2014,12,24), lags=5)

    # Use the prior two days of returns as predictor values, with direction as the response
    X = snpret[["Lag1","Lag2"]]
    y = snpret["Direction"]

    # The test data is split into two parts: Before and after 1st Oct. 2014.
    start_test = datetime.datetime(2014,10,1)

    # Create training and test sets
    X_train = X[X.index < start_test]
    X_test = X[X.index >= start_test]
    y_train = y[y.index < start_test]
    y_test = y[y.index >= start_test]

    # Create prediction DataFrame
    pred = pd.DataFrame(index=y_test.index)
    pred["Actual"] = y_test
    # Create and fit the three models    
    print("Hit Rates:")
    models = [("LR", LogisticRegression()), ("LDA", LDA()), ("QDA", QDA())]
    for m in models:
        fit_model(m[0], m[1], X_train, y_train, X_test, pred)

Hit Rates:
LR: 0.576
LDA: 0.576
QDA: 0.593

With all training data in more than ten years, hit rates does not get better never crossing 60%.




株式会社GAIAの説明会で驚いた - パチンコホールの売上や給与 -

Python機械学習scikit-learn入門 SVMの学習とクロス・バリデーション (K-fold)